Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Heliyon ; 10(4): e26014, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434050

RESUMO

Neuroblastoma, predominantly afflicting young individuals, is characterized as an embryonal tumor, with poor prognosis primarily attributed to chemoresistance. This study delved into the impact of tripartite motif (TRIM) 59, an E3 ligase, on neuroblastoma development and chemosensitivity through mediating ferroptosis and the involvement of the tumor suppressor p53. Clinical samples were assessed for TRIM59 and p53 levels to explore their correlation with neuroblastoma differentiation. In neuroblastoma cells, modulation of TRIM59 expression, either through overexpression or knockdown, was coupled with doxorubicin hydrochloride (DOX) or ferrostatin-1 (Fer-1) therapy. In vivo assessments examined the influence of TRIM59 knockdown on neuroblastoma chemosensitivity to DOX. Co-immunoprecipitation and ubiquitination assays investigated the association between TRIM59 and p53. Proliferation was gauged with Cell Counting Kit-8, lipid reactive oxygen species (ROS) were assessed via flow cytometry, and protein levels were determined by Western blotting. TRIM59 expression was inversely correlated with neuroblastoma differentiation and positively linked to cell proliferation in response to DOX. Moreover, TRIM59 impeded lipid ROS generation and ferroptosis by directly interacting with p53, promoting its ubiquitination and degradation in DOX-exposed neuroblastoma cells. Fer-1 countered the impact of TRIM59 knockdown on neuroblastoma, while TRIM59 knockdown enhanced the therapeutic efficacy of DOX in xenograph mice. This study underscores TRIM59 as an oncogene in neuroblastoma, fostering growth and chemoresistance by suppressing ferroptosis through p53 ubiquitination and degradation. TRIM59 emerges as a potential strategy for neuroblastoma therapy.

2.
Nat Aging ; 4(3): 414-433, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321225

RESUMO

The incidence of intestinal diseases increases with age, yet the mechanisms governing gut aging and its link to diseases, such as colorectal cancer (CRC), remain elusive. In this study, while considering age, sex and proximal-distal variations, we used a multi-omics approach in non-human primates (Macaca fascicularis) to shed light on the heterogeneity of intestinal aging and identify potential regulators of gut aging. We explored the roles of several regulators, including those from tryptophan metabolism, in intestinal function and lifespan in Caenorhabditis elegans. Suggesting conservation of region specificity, tryptophan metabolism via the kynurenine and serotonin (5-HT) pathways varied between the proximal and distal colon, and, using a mouse colitis model, we observed that distal colitis was more sensitive to 5-HT treatment. Additionally, using proteomics analysis of human CRC samples, we identified links between gut aging and CRC, with high HPX levels predicting poor prognosis in older patients with CRC. Together, this work provides potential targets for preventing gut aging and associated diseases.


Assuntos
Colite , Serotonina , Animais , Humanos , Idoso , Serotonina/metabolismo , Triptofano/metabolismo , Multiômica , Colite/metabolismo , Envelhecimento/genética , Caenorhabditis elegans/metabolismo , Primatas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38401077

RESUMO

Background: Amidst the complexities of sepsis-induced inflammatory responses and myocardial injury, this study investigates the therapeutic potential of vitamin C in mitigating sepsis complications. The findings offer crucial insights into the prospective use of vitamin C, shaping future strategies for enhanced patient care. Objective: To investigate the impact of vitamin C on the inflammatory response and myocardial damage in individuals with sepsis. Methods: A total of 83 sepsis patients treated in our hospital from January 2021 to January 2023 were randomly divided into a control group (n=41, receiving basic treatment) and a study group (n=42, receiving vitamin C in addition to basic treatment). To evaluate the impact of treatment, we compared organ dysfunction, inflammatory response index, myocardial injury index, and morbidity/mortality rates before and after the intervention in both groups. It allowed for a comprehensive analysis of the treatment's effects on these key parameters. Results: After therapy, the study group exhibited lower SOFA ratings compared to the control group (P < .05). Levels of Hypersensitive C-reactive Protein (hs-CRP), Tumor Necrosis Factor (TNF), High Mobility Group Protein B1 (HMGB1), Creatine Kinase Isoenzyme (CK-MB), Troponin I (cTnI), and B-type brain natriuretic peptide (BNP) were significantly lower in the study group than in the control group after treatment (P < .05). The study group also demonstrated a lower morbidity and mortality rate (9.52%) compared to the control group (29.27%) (P < .05). Conclusions: Vitamin C supplementation holds significant therapeutic value, contributing to reduced inflammatory response, myocardial injury, morbidity, and mortality rates in sepsis patients. This intervention enhances clinical efficacy, fostering disease regression.

4.
Acta Pharmacol Sin ; 45(4): 777-789, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38200148

RESUMO

Renal fibrosis is the final pathological change in renal disease, and aging is closely related to renal fibrosis. Mitochondrial dysfunction has been reported to play an important role in aging, but the exact mechanism remains unclear. Disulfide-bond A oxidoreductase-like protein (DsbA-L) is mainly located in mitochondria and plays an important role in regulating mitochondrial function and endoplasmic reticulum (ER) stress. However, the role of DsbA-L in renal aging has not been reported. In this study, we showed a reduction in DsbA-L expression, the disruption of mitochondrial function and an increase in fibrosis in the kidneys of 12- and 24-month-old mice compared to young mice. Furthermore, the deterioration of mitochondrial dysfunction and fibrosis were observed in DsbA-L-/- mice with D-gal-induced accelerated aging. Transcriptome analysis revealed a decrease in Flt4 expression and inhibition of the PI3K-AKT signaling pathway in DsbA-L-/- mice compared to control mice. Accelerated renal aging could be alleviated by an AKT agonist (SC79) or a mitochondrial protector (MitoQ) in mice with D-gal-induced aging. In vitro, overexpression of DsbA-L in HK-2 cells restored the expression of Flt4, AKT pathway factors, SP1 and PGC-1α and alleviated mitochondrial damage and cell senescence. These beneficial effects were partially blocked by inhibiting Flt4. Finally, activating the AKT pathway or improving mitochondrial function with chemical reagents could alleviate cell senescence. Our results indicate that the DsbA-L/AKT/PGC-1α signaling pathway could be a therapeutic target for age-related renal fibrosis and is associated with mitochondrial dysfunction.


Assuntos
Glutationa Transferase , Nefropatias , Rim , Mitocôndrias , Animais , Camundongos , Envelhecimento , Fibrose , Homeostase , Rim/patologia , Nefropatias/enzimologia , Mitocôndrias/enzimologia , Doenças Mitocondriais/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glutationa Transferase/metabolismo
5.
Antiviral Res ; 221: 105787, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145756

RESUMO

Varicella zoster virus (VZV) is associated with herpes zoster (HZ) or herpes zoster ophthalmicus (HZO). All antiviral agents currently licensed for the management of VZV replication via modulating different mechanisms, and the resistance is on the rise. There is a need to develop new antiviral agents with distinct mechanisms of action and adequate safety profiles. Pralatrexate (PDX) is a fourth-generation anti-folate agent with an inhibitory activity on folate (FA) metabolism and has been used as an anti-tumor drug. We observed that PDX possessed potent inhibitory activity against VZV infection. In this study, we reported the antiviral effects and the underlying mechanism of PDX against VZV infection. The results showed that PDX not only inhibited VZV replication in vitro and in mice corneal tissues but also reduced the inflammatory response and apoptosis induced by viral infection. Furthermore, PDX treatment showed a similar anti-VSV inhibitory effect in both in vitro and in vivo models. Mechanistically, PDX inhibited viral replication by interrupting the substrate supply for de novo purine and thymidine synthesis. In conclusion, this study discovered the potent antiviral activity of PDX with a novel mechanism and presented a new strategy for VZV treatment that targets a cellular metabolic mechanism essential for viral replication. The present study provided a new insight into the development of broad-spectrum antiviral agents.


Assuntos
Aminopterina/análogos & derivados , Herpes Zoster , Estomatite Vesicular , Animais , Camundongos , Herpesvirus Humano 3 , Estomatite Vesicular/tratamento farmacológico , Herpes Zoster/tratamento farmacológico , Vírus da Estomatite Vesicular Indiana , Vesiculovirus , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
6.
Org Lett ; 25(50): 8965-8969, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38064279

RESUMO

Hypseudohenones A-C (1-3), the first rearranged homoadamantane-type polycyclic polyprenylated acylphloroglucinols, were isolated from Hypericum pseudohenryi. Their structures with an unprecedented tricyclo[4.3.1.13,8]undecane-2,4,10-trione core were determined by spectroscopic analysis, quantum-chemical calculations, and X-ray crystallography. A method for determining the relative configuration at C-3 was established by the peak shape of H-28 or J-value of H-3/H-28. Moreover, 2-3 exhibited significant AChE inhibitory activity, and the interactions of 2-3 with AChE were evaluated by molecular docking.


Assuntos
Hypericum , Estrutura Molecular , Hypericum/química , Simulação de Acoplamento Molecular , Floroglucinol/química , Cristalografia por Raios X
7.
J Thorac Dis ; 15(8): 4154-4171, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37691651

RESUMO

Background: After primary mitral valve (MV) repair, residual mitral valve regurgitation (MR) and recurred mitral valve stenosis (MS) are the principal occurrences. This study's purpose is to identify the risk factors of MV dysfunction, reoperation and death following repair of primary MV diseases. Methods: We retrospectively reviewed 98 patients (47 males and 51 females) with primary MV diseases between January 2013 and December 2021. The median age was 34 months [interquartile range (IQR), 11.4-59] for male and 24 months (IQR, 7.35-72) for female. The left ventricular ejection fraction (LVEF), the left ventricular end-diastolic volume index (LVEDVI) and left ventricular end-systolic volume index (LVESVI) were assessed to evaluate patient's left ventricular function. Risk factors that increased the likelihood of MV dysfunction, reoperation and death after surgery were investigated. Results: During the 23.5 months (IQR, 9-44.5) of follow-up, 5 (5.1%) patients died, including one early death and two late deaths (n=3; 3.9%) in the MR group and one early death and one late death (n=2; 9.1%) in the MS group. Seven (9.2%) patients in the primary MR disease group and 2 (9.1%) patients in the primary MS disease group required a second MV operation for a total reoperation rate of 9.2% (9/98). As of the most recent follow-up, 34 patients experienced MV dysfunction. No significant difference was recorded between primary MR and MS disease groups in Kaplan-Meier freedom from MV dysfunction and reoperation. Mixed MV pathology (P=0.014) acted as an independent risk factor for MV dysfunction, and ≥ moderate MR at 24 h after first surgery (P=0.014) an independent risk factor for MV reoperation. Double-orifice MV technique (P=0.002), MV reoperation (P=0.023) and severe MR at 24 h after first surgery (P=0.028) were independent risk factors for death. Conclusions: The Kaplan-Meier freedom from MV dysfunction and reoperation were comparable between primary MR and MS disease groups. A high probability of MV dysfunction was predicted due to the mixed MV pathology. Patients with ≥ moderate MR at 24 h after first surgery had a higher risk of MV reoperation. Double-orifice MV technique, MV reoperation and severe MR at 24 h after first surgery had a higher risk for death.

8.
Chem Biol Interact ; 385: 110721, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739048

RESUMO

Aberrant bone marrow mesenchymal stem cell (BMSC) lineage differentiation leads to osteoporosis. Codonopsis pilosula polysaccharides (CPPs) have been widely used in traditional Chinese medicines, due to their multiple pharmacological actions. However, little is known regarding their effects on BMSC differentiation. This study aimed to identify the effects and mechanisms of CPPs on osteogenic and adipogenic differentiation in rat BMSCs. An osteoporosis model was established in Sprague-Dawley (SD) rats through bilateral ovariectomy (OVX), and be applied to observe the effect of CPPs on osteoporosis in vivo. The ability of CPPs to affect rBMSC proliferation was determined using the CCK-8 assay, and the osteogenic differentiation of rBMSCs measured by ALP and Alizarin Red S staining. The adipogenic differentiation of rBMSCs was measured by Oil Red O staining. The mRNA and protein levels related to osteogenesis and adipogenic differentiation of rBMSCs were measured using qRT-PCR and western blotting, respectively. Cellular immunofluorescence was used to detect cytokine expression and localisation in rBMSCs. We observed that CPPs ameliorated bone loss in OVX rats. CPPs considerably enhanced osteogenic differentiation by increasing ALP activity and the prevalence of mineralised nodules and promoting the mRNA and protein expression of osteogenic differentiation markers (RUNX2, COL I, ALP, and OPN). Furthermore, it inhibited the accumulation of lipid vesicles in the cytoplasm and the mRNA and protein expression levels of adipogenic differentiation markers (PPARγ and C/EBPα) in a concentration-dependent manner. Meanwhile, CPPs notably increased the mRNA and protein expression of ß-catenin, the core protein of the Wnt/ß-catenin signaling pathway, in a concentration-dependent manner. Adding DKK1, a mature inhibitor of the Wnt/ß-catenin signaling pathway, partially suppressed CPP-stimulated ß-catenin activation, and reversed the acceleration of osteogenic differentiation and the inhibition of lipogenic differentiation. Our observations demonstrated CPPs ameliorate bone loss in OVX rats in vivo, and favour osteogenic differentiation while inhibit adipogenic differentiation of rBMSCs in vitro. The findings suggested that CPPs could serve as functional foods for bone health, and have great potential for the prevention and treatment of osteoporosis.

9.
Chin Med J (Engl) ; 136(21): 2521-2537, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37442770

RESUMO

ABSTRACT: Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.


Assuntos
Ferroptose , Humanos , Apoptose , Fosfolipídeos/metabolismo , Óxido Nítrico Sintase
10.
Front Endocrinol (Lausanne) ; 14: 1182848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383398

RESUMO

The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Retículo Endoplasmático , Homeostase , Estresse do Retículo Endoplasmático , Células Epiteliais
11.
J Int Med Res ; 51(6): 3000605231182557, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37357760

RESUMO

OBJECTIVE: To investigate the relationships of leukemia inhibitory factor receptor (LIFR) with cervical cancer invasion and metastasis. METHODS: From January 2021 to December 2022, 45 patients treated for cervical cancer and lung metastases were identified. Western blotting was used to determine the expression of Hippo-YAP signaling pathway-related proteins. Meanwhile, 40 healthy Sprague-Dawley nude mice were used and evenly randomized into two groups, which were injected with LIFR-overexpressing (study group) or normal cervical cancer cells (control group). The lung tissue of nude mice was removed for hematoxylin-eosin staining, and the number of lung cell metastases in nude mice was counted. RESULTS: The highest LIFR mRNA expression was found in paracancerous tissue, followed by cervix cancer tissue and metastatic lesions. The study group exhibited higher LIFR, P-YAP, and P-TAZ protein expression and lower YAP and TAZ protein expression than the control group. The study group had a lower number of lung metastases than the control group. CONCLUSION: Decreased expression of LIFR and decreased phosphorylation of Hippo-YAP signaling pathway-related proteins might be the underlying mechanisms that promote lung metastasis of cervical cancer.


Assuntos
Neoplasias Pulmonares , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Receptores de OSM-LIF , Neoplasias do Colo do Útero/genética
12.
Langmuir ; 39(20): 7167-7174, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37159563

RESUMO

Ion sieving is a critical process employed in various applications, such as desalination and ion extraction. Nevertheless, achieving rapid and accurate ion sieving remains an exceptionally difficult task. Drawing inspiration from the effective ion sieving capabilities of biological ion channels, we present the development of two-dimensional Ti3C2Tx ion nanochannels incorporating 4-aminobenzo-15-crown-5-ether molecules as specific ion binding sites. These binding sites had a significant influence on the ion transport process and improved ion recognition. Permeation of both Na+ and K+ was facilitated because their ion diameters are compatible with the cavity in the ether ring. Moreover, owing to the strong electrostatic interactions, the permeation rate for Mg2+ increased by a factor of 55 compared to that for the pristine channels, which was higher than those of all monovalent cations. Furthermore, the transport rate for Li+ was relatively lower than those of Na+ and K+, which was attributed to difficult binding of the Li+ to the oxygens in the ether ring. Consequently, the ion selectivities of the composite nanochannel were up to 7.6 for Na+/Li+ and 9.2 for Mg2+/Li+. Our work presents a straightforward approach to creating nanochannels exhibiting precise ion discrimination.

13.
Anal Chem ; 95(21): 8197-8205, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191225

RESUMO

Fatty acids (FAs) and fatty alcohols (FOHs) are essential compounds for maintaining life. Due to the inherent poor ionization efficiency, low abundance, and complex matrix effect, such metabolites are challenging to precisely quantify and explore deeply. In this study, a pair of novel isotope derivatization reagents known as d0/d5-1-(2-oxo-2-(piperazin-1-yl) ethyl) pyridine-1-ium (d0/d5-OPEPI) were designed and synthesized, and an in-depth screening strategy for FAs and FOHs was established based on d0/d5-OPEPI coupled with liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS/MS). Using this approach, a total of 332 metabolites were identified and annotated (some of the FAs and FOHs were reconfirmed by standards). Our results demonstrated that OPEPI labeling could significantly enhance the MS response of FAs and FOHs via the introduction of permanently charged tags. The detection sensitivities of FAs were increased by 200-2345-fold compared with the nonderivatization method. At the same time, for FOHs, due to the absence of ionizable functional groups, sensitive detection was achieved utilizing OPEPI derivatization. One-to-one internal standards were provided by using d5-OPEPI labeling to minimize the errors in quantitation. Moreover, the method validation results showed that the method was stable and reliable. Finally, the established method was successfully applied to the study of the FA and FOH profiles of two heterogeneous severe clinical disease tissues. This study would improve our understanding of the pathological and metabolic mechanisms of FAs and FOHs for inflammatory myopathies and pancreatic cancer and also prove the generality and accuracy of the developed analytical method for complex samples.


Assuntos
Miosite , Neoplasias Pancreáticas , Humanos , Ácidos Graxos/análise , Espectrometria de Massas em Tandem/métodos , Álcoois Graxos , Isótopos , Neoplasias Pancreáticas
14.
Virol Sin ; 38(3): 409-418, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37028598

RESUMO

Folate receptor alpha (FOLR1) is vital for cells ingesting folate (FA). FA plays an indispensable role in cell proliferation and survival. However, it is not clear whether the axis of FOLR1/FA has a similar function in viral replication. In this study, we used vesicular stomatitis virus (VSV) to investigate the relationship between FOLR1-mediated FA deficiency and viral replication, as well as the underlying mechanisms. We discovered that FOLR1 upregulation led to the deficiency of FA in HeLa cells and mice. Meanwhile, VSV replication was notably suppressed by FOLR1 overexpression, and this antiviral activity was related to FA deficiency. Mechanistically, FA deficiency mainly upregulated apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) expression, which suppressed VSV replication in vitro and in vivo. In addition, methotrexate (MTX), an FA metabolism inhibitor, effectively inhibited VSV replication by enhancing the expression of APOBEC3B in vitro and in vivo. Overall, our present study provided a new perspective for the role of FA metabolism in viral infections and highlights the potential of MTX as a broad-spectrum antiviral agent against RNA viruses.


Assuntos
Receptor 1 de Folato , Vírus da Estomatite Vesicular Indiana , Humanos , Animais , Camundongos , Células HeLa , Receptor 1 de Folato/farmacologia , Vírus da Estomatite Vesicular Indiana/genética , Antivirais/farmacologia , Replicação Viral , Ácido Fólico/farmacologia , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/farmacologia , Desaminases APOBEC
15.
Metabolism ; 143: 155526, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822494

RESUMO

BACKGROUND: Folate (FA) is an essential cofactor in the one-carbon (1C) metabolic pathway and participates in amino acid metabolism, purine and thymidylate synthesis, and DNA methylation. FA metabolism has been reported to play an important role in viral replications; however, the roles of FA metabolism in the antiviral innate immune response are unclear. OBJECTIVE: To evaluate the potential regulatory role of FA metabolism in antiviral innate immune response, we establish the model of FA deficiency (FAD) in vitro and in vivo. The molecular and functional effects of FAD on 2'-5'-oligoadenylate synthetases (OAS)-associated antiviral innate immunity pathways were assessed; and the potential relationship between FA metabolism and the axis of adenosine deaminases acting on RNA 3 (ADAR3)/endogenous double-stranded RNA (dsRNA)/OAS was further explored in the present study, as well as the potential translatability of these findings in vivo. METHODS: FA-free RPMI 1640 medium and FA-free feed were used to establish the model of FAD in vitro and in vivo. And FA and homocysteine (Hcy) concentrations in cell culture supernatants and serum were used for FAD model evaluation. Ribonucleoprotein immunoprecipitation assay was used to enrich endogenous dsRNA, and dot-blot was further used for quantitative analysis of endogenous dsRNA. Western-blot assay, RNA isolation and quantitative real-time PCR, immunofluorescence assay, and other molecular biology techniques were used for exploring the potential mechanisms. RESULTS: In this study, we observed that FA metabolism negatively regulated OAS-mediated antiviral innate immune response. Mechanistically, FAD induced ADAR3, which interacted with endogenous dsRNA, to inhibit deaminated adenosine (A) being converted into inosine (I), leading to the cytoplasmic accumulation of dsRNA. Furthermore, endogenous dsRNA accumulated in cytoplasm triggered the host immune activation, thus promoting the expression of OAS2 to suppress the replication of viruses. Additionally, injection of 8-Azaadenosine to experimental animals, an A-to-I editing inhibitor, efficiently enhanced OAS-mediated antiviral innate immune response to reduce the viral burden in vivo. CONCLUSIONS: Taken together, our present study provided a new perspective to illustrate a relationship between FA metabolism and the axis of ADAR3/endogenous dsRNA/OAS, and a new insight for the treatment of RNA viral infectious diseases by targeting the axis of ADAR3/endogenous dsRNA/OAS.


Assuntos
Antivirais , RNA de Cadeia Dupla , Animais , Adenosina , Antivirais/farmacologia , Imunidade Inata , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/metabolismo
16.
Anal Bioanal Chem ; 415(7): 1305-1311, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36370201

RESUMO

Cardiomyocyte-derived extracellular vesicles (EVs) are a promising class of biomarkers that can advance the diagnosis of many kinds of cardiovascular diseases. Herein, we develop a new electrochemical method for the feasible detection of cardiomyocyte-derived EVs in biological fluids. The core design of the method is the fabrication of a peptide-anchored biomimetic interface consisting of a lipid bilayer and peptide probes. On the one hand, the lipid bilayer provides excellent antifouling ability to the electrode interface and facilitates the anchoring of peptide probes. On the other hand, the peptide probes equip the electrode interface with excellent binding capability and affinity to CD172a, a specific marker of cardiomyocyte-derived EVs, thus enabling the efficient and selective detection of target EVs. Taking EVs derived from the heart myoblast cells H9C2 as the model target, the method displays a wide linear detection range from 1 × 103 to 1 × 108 particles/mL with a desirable detection limit of 132 particles/mL. Furthermore, the method shows good performance in biological fluids such as serum, and thus may have great potential for practical use in the diagnosis of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Humanos , Doenças Cardiovasculares/metabolismo , Miócitos Cardíacos , Biomimética , Bicamadas Lipídicas/metabolismo , Vesículas Extracelulares/metabolismo , Peptídeos/metabolismo
17.
Viruses ; 14(12)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36560709

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is the most important pathogen threatening the aquaculture of salmonid fish in China. In addition to the common genogroup J IHNV, genogroup U has been newly discovered in China. However, there is no effective DNA vaccine to fight against this emerging genogroup U IHNV in China. In this study, DNA vaccines encoding the IHNV viral glycoprotein (G) gene of the GS2014 (genogroup J) and BjLL (genogroup U) strains isolated from northern China were successfully developed, which were identified by restriction analysis and IFA. The expression of the Mx-1 gene and G gene in the spleens and muscles of the injection site as well as the titers of the serum antibodies were measured to evaluate the vaccine efficacy by RT-qPCR and ELISA. We found that DNA vaccine immunization could activate Mx1 gene expression and upregulate G gene expression, and the mRNA levels of the Mx1 gene in the muscles were significantly higher than those in the spleens. Notably, DNA vaccine immunization might not promote the serum antibody in fish at the early stage of immunization. Furthermore, the efficacy of the constructed vaccines was tested in intra- and cross-genogroup challenges by a viral challenge in vivo. It seemed that the DNA vaccines were able to provide great immune protection against IHNV infection. In addition, the genogroup J IHNV-G DNA vaccine showed better immune efficacy than the genogroup U IHNV-G or divalent vaccine, which could provide cross-immune protection against the genogroup U IHNV challenge. Therefore, this is the first study to construct an IHNV DNA vaccine using the G gene from an emerging genogroup U IHNV strain in China. The results provide great insight into the advances of new prophylactic strategies to fight both the genogroup J and U IHNV in China.


Assuntos
Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Vacinas de DNA , Vacinas Virais , Animais , Vacinas de DNA/genética , Vírus da Necrose Hematopoética Infecciosa/genética , Genótipo , China/epidemiologia , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/veterinária , Vacinas Virais/genética
18.
BMC Nephrol ; 23(1): 365, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376833

RESUMO

BACKGROUND: Peritoneal dialysis (PD) is an effective and successful renal replacement therapy. The baseline peritoneal solute transfer rate (PSTR) is related to local membrane inflammation and may be partially genetically determined. Herein, we focused on vascular endothelial growth factor (VEGF) and its receptor, kinase insert domain containing receptor (KDR). METHODS: This study recruited 200 PD patients from Renji Hospital in Shanghai, China. We analysed the association between the polymorphisms of VEGF and KDR and the 4-hour dialysate-to-plasma ratio for creatinine (4 h D/P Cr), which was measured between one and three months after initiating PD. RESULTS: The CC genotype in VEGF rs3025039 and the AA genotype in KDR rs2071559 were both positively associated with a fast baseline PSTR (VEGF rs3025039 CC vs. TT + TC: 0.65 ± 0.12 vs. 0.61 ± 0.11; P = 0.029; KDR rs2071559 AA vs. GA + GG: 0.65 ± 0.12 vs. 0.62 ± 0.12; P = 0.039). CONCLUSION: Baseline PSTR was partly determined by VEGF and KDR gene polymorphisms.


Assuntos
Diálise Peritoneal , Fator A de Crescimento do Endotélio Vascular , Humanos , China , Peritônio/metabolismo , Polimorfismo Genético/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Chem Commun (Camb) ; 58(94): 13135-13138, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349731

RESUMO

Five caged polycyclic polyprenylated acylphloroglucinols including an unprecedented octahydro-2,5-methanoindene skeleton (1) were discovered from Hypericum curvisepalum. Biologically, 1 and 2 are potent Cav3.2 T-type Ca2+ channel inhibitors with negligible effect on the cardiovascular antitarget, the human ether-à-go-go-related gene potassium channel. Additionally, 2 indicates strong antinociception in the mouse acetic acid writhing test.


Assuntos
Hypericum , Humanos , Camundongos , Animais , Floroglucinol/farmacologia , Estrutura Molecular
20.
J Food Biochem ; 46(12): e14463, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314441

RESUMO

Resveratrol, which is a natural polyphenol found in grapes, berries, peanuts, and medicinal plants, has previously been reported to perform several biological functions, including inhibition of hepatic fibrosis. Activated hepatic stellate cells (HSCs) are the major cellular source of matrix protein-secreting myofibroblasts, which are the major drivers of liver fibrogenesis. Numerous studies on the protective effects of resveratrol against liver fibrosis have focused on the inhibition of HSC activation. Although the underlying mechanisms remain to be fully elucidated, the regulation of autophagy and apoptosis might be intimately related. The mouse HSC line JS1 was stimulated with resveratrol to assess the mechanism and relationship between autophagy and apoptosis. Resveratrol modulated JS1 cell viability in a dose-dependent manner. Moreover, resveratrol inhibited JS1 cell activation and induced autophagy and apoptosis. This antifibrotic effect was attenuated when autophagy was inhibited using chloroquine (CQ) or 3-methyladenine (3-MA) or when apoptosis was inhibited using Z-VAD-FMK. Furthermore, whether the Sirtuin1 (SIRT1) and c-Jun N-terminal kinase (JNK) signaling pathways were associated with the resveratrol-mediated induction of autophagy and apoptosis in JS1 cells was examined. The SIRT1 inhibitor EX527 reversed autophagy, and the JNK inhibitor SP600125 reversed both autophagy and apoptosis induced by resveratrol. These findings suggest that the SIRT1 and JNK signaling pathways may be involved in the resveratrol-mediated inhibition of HSC activation by regulating autophagy and apoptosis. SIRT1 may be responsible for inducing autophagy, while JNK affects both autophagy and apoptosis. This study highlighted autophagy and apoptosis as therapeutic targets by which resveratrol can attenuate fibrosis. PRACTICAL APPLICATIONS: Resveratrol, which is a natural polyphenol found in grapes, berries, peanuts, and medicinal plants, has previously been reported to inhibit hepatic fibrosis. Since activated HSCs are the major drivers of liver fibrogenesis, many studies on the anti-hepatic fibrosis effects of resveratrol have focused on inhibiting HSC activation. The objective of this study was to evaluate the inhibitory effect of resveratrol on HSC activation and focused on the mechanism by which resveratrol modulated autophagy and apoptosis in JS1 cells, a mouse immortalized HSC line. It was shown that resveratrol inhibited HSC activation by inducing autophagy and apoptosis in a dose-dependent manner, and the mechanism may be associated with the SIRT1 and JNK signaling pathways. This study highlighted autophagy and apoptosis as therapeutic targets by which resveratrol can attenuate fibrosis. These findings may provide a new framework for understanding the mechanism by which resveratrol inhibits HSC activation.


Assuntos
Sistema de Sinalização das MAP Quinases , Sirtuína 1 , Camundongos , Animais , Resveratrol/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Autofagia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA